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Abstract

A large scale optimization of an electronics package has
been completed using a massively parallel structural dy-
namics code. The optimization goals were to maximize
safety margins for stress and acceleration resulting from
transient impulse loads, while remaining within strict
mass limits. The optimization process utilized nongra-
dient, gradient, and approximate optimization methods
in succession to modify shell thickness and foam den-
sity values within the electronics package. This combi-
nation of optimization methods was successful in improv-
ing the performance from an infeasible design which vio-
lated stress allowables by a factor of two to a completely
feasible design with positive design margins, while re-
maining within the mass limits. In addition, a tradeoff
curve of mass versus safety margin was developed to facil-
itate the design decision process. These studies employed
the ASCI Red supercomputer and utilized multiple levels
of parallelism on up to 2560 processors. In one portion
of this optimization study, a series of calculations were
performed on ASCI Red in four days, where an equiva-
lent calculation on a single desktop computer would have
taken greater than 10 years to complete.

1 Introduction

This report describes the design optimization of an elec-
tronics package (EP) which is one component of a re-entry
vehicle (RV). The design study was performed using mas-
sively parallel, high-fidelity structural dynamics simula-
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tions conducted on the Accelerated Strategic Computing
Initiative (ASCI) Red supercomputer at Sandia National
Laboratories.

Optimization problems of this complexity and com-
putational expense pose many technical challenges. For
good computational efficiency, the structural dynamics
and optimization codes must be scalable to a large num-
bers of processors (order102 − 104). For the structural
dynamics software, this entails the use of specific mathe-
matical techniques (e.g., linear solvers) that exploit both
the structure of the finite element model and the hardware
configuration of the parallel computer. For the optimiza-
tion software, parallel scheduling of simulations must also
exploit the hardware configuration of the parallel com-
puter, and the optimization methods must be robust to
nonsmooth response values generated in the structural dy-
namics simulation.

Over the course of this study, several optimization
methods were applied in an effort to improve the design
of the EP. The results of this study demonstrate the util-
ity of having a “toolbox” of sensitivity analysis and op-
timization algorithms for performing engineering design
optimization studies.

Details of this design effort are given below, with
Sections 2-5 providing background information on the
electronics package model, the Salinas structural dynam-
ics software, the DAKOTA optimization toolkit, and the
ASCI Red supercomputer, respectively. Section 6 de-
scribes the formulations, methods, and results in the EP
design optimization problem, and Section 7 provides con-
cluding remarks.

2 Electronics Package Model

The motivation for the optimization study was to help de-
signers improve the structural integrity of a new EP struc-
tural design concept. Since this EP design is a refurbish-
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Figure 1: A CAD model of the electronics package.

ment for the RV, it provided the opportunity to incorporate
several new components into the existing package. How-
ever, an important requirement was to avoid changing the
flight characteristics of the RV, so a restriction of no more
than10% deviation from the nominal EP mass was im-
posed. In order to add functionality and maintain mass,
the EP design concept replaced some structure with sup-
port foam. Thus, the design problem is a challenging one
in that an EP design concept with less structural support
must still survive high stresses and accelerations from se-
vere RV structural loading conditions. A solid model of
the EP design concept is shown in Figure 1.

Over time, the level of fidelity in structural dynamics
analysis has increased significantly (Figure 2) as a result
of more advanced computers and, most recently, the avail-
ability of a massively parallel structural dynamics code.
In this study, the model was discretized using a finite el-
ement model having 500,000 degrees of freedom. This
model captures the salient features of the EP in suffi-
cient detail for the optimization study. However, mod-
els of greater than 10 million degrees of freedom have
been used to resolve additional detail in the EP. The EP fi-
nite element model was decomposed into 256 subdomains
for parallel processing. During the finite element analy-
sis, each subdomain was associated with a single proces-
sor, and the data input/output (I/O) operations were each
spread to 256 separate, subdomain specific files.

For this design study, 55 finite element blocks were
identified as the most critical. Some of these blocks were
structural shell elements within the EP, while others were
blocks of foam encapsulant used between and around the
EP components. The design variables for this study were

Figure 2: Historical progression of the electronics pack-
age finite element model fidelity.

the shell thicknesses of a subset of the structural blocks,
and the density values for a subset of the foam encapsu-
lant blocks. These subsets were selected based on a modal
sensitivity analysis, with those blocks having the largest
impact on the first 100 frequencies (greatest number of
frequency derivatives greater than a threshold) being se-
lected as design parameters. Stress and acceleration val-
ues within each of the 55 blocks served as response quan-
tities to be used during the optimization process.

3 Salinas: Massively Parallel Struc-
tural Dynamics

Salinas [1] is a general-purpose, finite element structural
dynamics code designed to be scalable on massively par-
allel computers. Currently the code offers static analy-
sis, direct implicit transient analysis, eigenvalue analysis
for computing modal response, and modal superposition-
based frequency response and transient response. In addi-
tion, semi-analytical derivatives of many response quan-
tities with respect to user-selected design parameters are
calculated. Salinas also includes an extensive library
of standard one-, two-, and three-dimensional elements,
nodal and element loading, and multi-point constraints.
Salinas solves systems of equations using an iterative,
multilevel solver, which is specifically designed to exploit
massively parallel machines.

Salinas uses a linear solver that was selected based on
the criteria of robustness, accuracy, scalability and effi-
ciency. Direct methods based on sparse Gaussian elim-
ination were considered but they appear to provide poor
robustness on platforms, such as ASCI Red, with fast
communication, many processors, and limited per proces-
sor memory. General purpose iterative solvers, such as
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the implementation of the preconditioned conjugate gra-
dient method with over-lapping Schwartz preconditioner
available in Aztec[2], were also evaluated. These meth-
ods converged too slowly for the linear systems obtained
from the discretization of structures by high order plate
and shell elements. In this case, the underlying partial dif-
ferential equation is the fourth order biharmonic equation
for which special purpose iterative solvers are necessary.
This led to the selection of a multilevel domain decom-
position method, Finite Element Tearing and Intercon-
nect (FETI)[3], that is the most successful parallel solver
known to the authors for the linear systems applicable to
structural mechanics. FETI is a mature solver, with some
versions used in commercial finite element packages such
as ANSYS[4]. For plates and shells, the singularity in
the linear systems has been traced to the subdomain cor-
ners. To solve such linear systems, an additional coarse
problem is automatically introduced that removes the cor-
ner point singularity. FETI is scalable in the sense that
as the number of unknowns increases and the number of
unknowns per processor remains constant, the time to so-
lution does not increase. Further, FETI is accurate in the
sense that the convergence rate does not deteriorate as the
iterates converge. Finally the computational bottleneck
in FETI, a sparse direct subdomain solve, is amenable to
high performance solution methods.

An eigensolver was selected for Salinas based on the
same criteria; robustness, accuracy, scalability and effi-
ciency. Both a Lanczos-based solver[5] and subspace it-
eration were evaluated. The Lanczos algorithm solves the
minimal number of linear systems required to approxi-
mate a set of modes to a given accuracy, and Lanczos-
based methods are significantly more efficient than sub-
space iteration. Subspace iteration is a comparatively sim-
ple algorithm that is believed to be somewhat less sensi-
tive to linear solver accuracy than Lanczos-based meth-
ods. Structural models are known for which the FETI
solver does not converge, but in these cases the accuracy
is too low for either subspace iteration or Lanczos-based
methods to compute accurate modes. The PARPACK
Lanczos-based solver was selected because the memory
usage is minimal, the software is reliable, and the num-
ber of linear systems solved per mode is nearly mini-
mized. PARPACK[6] is scalable and achieves BLAS2
performance.

4 DAKOTA: Multilevel Parallel Op-
timization

The DAKOTA toolkit [7] is a software framework for sys-
tems analysis, encompassing optimization, parameter es-
timation, uncertainty quantification, design of computer
experiments, and sensitivity analysis. It provides generic

simulation interfacing facilities which allow the use of a
variety of engineering and physics simulation codes as
function evaluators within an iterative loop. DAKOTA
manages the complexities of its analysis and optimiza-
tion capabilities through the use of object-oriented ab-
straction, class hierarchies, and polymorphism. A va-
riety of optimization algorithms are available, ranging
from gradient-based nonlinear programming methods to
nongradient-based pattern search methods. The flexibil-
ity of the framework allows for easy incorporation of the
latest external and internal algorithmic developments. In
addition, the variety of methods and interfaces can be used
as building blocks for more sophisticated studies, such as
surrogate-based optimization, hybrid optimization, mixed
integer nonlinear programming, and optimization under
uncertainty.

Parallelism is an essential component of the DAKOTA
framework. Particular emphasis has been given to simul-
taneously exploiting parallelism at a variety of levels in
order of achieve near-linear scaling on massively parallel
computers. For example, DAKOTA can manage concur-
rent optimizations, each with concurrent function evalu-
ations, each with concurrent analyses that utilize multi-
ple processors. Reference [8] provides guidance on how
to select partitioning schemes and scheduling algorithms
within these levels in order to maximize overall parallel
efficiency and to ensure robustness with respect to vari-
abilities (e.g., simulation duration variability). A com-
mon case is two levels of parallelism, in which concurrent
function evaluations each run on multiple processors. In
this study, DAKOTA employed two levels of parallelism
by managing up to 10 concurrent Salinas invocations,
each of which required 256 compute nodes. Through this
combination of coarse-grained and fine-grained parallel
computing, DAKOTA was able to effectively utilize 2560
processors and achieve rapid turnaround on this large-
scale design study.

5 ASCI Red Supercomputer

5.1 Architecture Review

For this optimization study, substantial compute resources
were required. Within Sandia National Laboratories, one
of the primary production computing platforms is the
ASCI Red supercomputer [9, 10]. ASCI Red is a mas-
sively parallel, message-passing, multiple input multiple
data (MIMD) computer. It achieves multiple TeraFLOPS
(trillion floating point operations per second) peak perfor-
mance. It is designed so that file I/O, memory, disk ca-
pacity, and communication are scalable. Standard parallel
programming libraries, such as the Message Passing Inter-
face (MPI) [11] make it relatively simple to port parallel
applications to this system.
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Table 1: Hardware and performance characteristics of the
ASCI Red supercomputer.

Service Nodes 16
Compute Nodes 4640
Total Processors 9536

System RAM (TeraBytes) 1.21
Compute Node Peak Performance666

(MegaFLOPS)
System Peak Performance 3.15

(TeraFLOPS)

The processors in the ASCI Red supercomputer are or-
ganized into four partitions: compute, service, system,
and I/O. Of these, the service partition provides an inte-
grated, scalable host that supports interactive users, ap-
plication development, and system administration. This
partition runs a full UNIX operating system. The paral-
lel applications execute in the compute partition, which
contains nodes optimized for floating point performance
and for high bandwidth communication. This partition
executes the Cougar operating system [12] which is a
lightweight kernel intended to leave as much node mem-
ory as possible for the application. Each compute node
consists of two 333 MHz Intel Pentium-II Xeon Core
processors with 256 Mbytes of random access memory
(RAM). In this study, only one processor per node was
used for computation while the other processor was used
for communication, although a new “virtual node” capa-
bility allows the use of both node processors for computa-
tion. The system hardware and performance attributes of
ASCI Red are summarized in Table 1.

5.2 Salinas/DAKOTA Implementation on
ASCI Red

DAKOTA can be interfaced with simulation codes in a
variety of ways depending on the level of intrusiveness
one is willing to support, on the desired performance, and
on the underlying compute architecture. The simplest ap-
proach is the UNIX “system call” method. This is the
least intrusive method in that the simulation can be used
as is, with no modifications. It is also the least efficient
method in that it incurs the overhead of creating separate
processes for the simulations. In practice, this overhead
is usually small relative to the expense of the simulations.
The most computationally efficient interface technique is
the “direct” method in which the simulation code (e.g.,
Salinas) is linked into DAKOTA as a callable function.
While this direct interface is efficient, it is intrusive to the
simulation code since the code must be transformed to a
subroutine and, in the parallel case, made modular on an
MPI communicator. In addition, it complicates the use

of pre- and post-processing tools (e.g., mesh generation,
domain decomposition and reconstitution).

These two interfacing approaches have additional dis-
tinctions when applied on massively parallel computers
which employ a service/compute node distinction. In par-
ticular, the system call approach involves the execution of
DAKOTA on the service nodes where it creates concurrent
simulation driver processes on the service nodes. Each of
these simulation drivers then launches a parallel simula-
tion into the compute node partition. DAKOTA must then
continuously monitor for the completion of these simula-
tions, again utilizing service node compute resources. The
direct approach, on the other hand, involves the execution
of a combined executable on the compute nodes only. The
management of concurrent multiprocessor simulations is
performed internally using MPI communicators. Clearly,
the system call approach places far greater demands on
the service partition than the direct approach.

For this study, the UNIX system call interface method
was used which allowed the use of a separate, unmodi-
fied Salinas executable. In this case, DAKOTA was run
on the service node partition where it coordinated con-
current Salinas jobs in the compute partition. This is
depicted in Figure 3. Not shown in this figure are the
pre- and post-processing steps needed to communicate be-
tween DAKOTA and Salinas. Values of the design vari-
ables were written by DAKOTA to a file and then incorpo-
rated into the Salinas input file using a Sandia-developed
file parsing program. The output of Salinas was post-
processed to provide the mass and safety margin data val-
ues needed for the optimization methods in DAKOTA.
While the results from each simulation could be gathered
into a single file for post-processing, it was more expedi-
ent to evaluate safety margins across separate subdomain
databases. This entire cycle was automated using a sin-
gle driver script that was invoked by DAKOTA. While
DAKOTA was executed on a single service node and each
of the system calls to concurrent Salinas drivers were initi-
ated from this single service node, a resident load spread-
ing utility would relocate Salinas monitoring processes
among the entire service partition.

5.3 Computational Issues

Optimization studies using nonintrusive interfacing ap-
proaches impose different loads on supercomputers in
comparison to single parallel executables. In particular,
multiple concurrent jobs put much higher load on the ser-
vice nodes than single jobs. The service nodes on ASCI
Red were designed to manage basic coordination tasks
and not significant floating point operations or heavy I/O
demands. Although the individual processors are capa-
ble of computations, there are simply not enough service
nodes to sustain significant activities. In the case of this
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Figure 3: A depiction of the DAKOTA/Salinas implementation on ASCI Red.

design study, the service nodes were responsible for man-
aging the optimization process (running the optimizer and
querying for job completion) as well as concurrent simu-
lation driver processes and multiprocessor simulation ini-
tiation processes. At certain points during the studies,
Salinas jobs would hang on initiation. In the worst of
these incidents, a service node became overloaded and
crashed, which necessitated a full reboot of the machine.

It appears as though the observed reliability problems
stemmed not directly from the total amount of work be-
ing performed, but rather the closely synchronized nature
of concurrent simulation invocation. In this study, it was
found that staggering the Salinas job initiations by a few
seconds allowed the load spreading utility sufficient time
to spread the Salinas monitoring processes among the ser-
vice nodes, which resulted in improved reliability. A con-
tinuing effort is focusing on improving the robustness of
the service nodes during optimization procedures.

6 Optimization Results

The overall objective of this optimization study was to
modify the electronics package so that the new design sat-
isfied safety margin requirements and remained within a
strict mass budget. Four different optimization algorithms
and two different optimization problem formulations were
applied to this EP design problem.

6.1 Phase 1: Nongradient and Gradient-
Based Optimization

6.1.1 Coordinate Pattern Search Algorithm

The initial optimization strategy for the EP redesign was
to maximize the minimum safety margin (SM), subject
to constraints on the EP mass. Four shell thickness pa-
rameters and one foam density parameter used in the EP
model were selected as design variables for this optimiza-
tion case. These five parameters were the most sensitive
based on the results of a modal sensitivity study.

The Phase 1 optimization problem was formulated in
DAKOTA as follows:

maximize SMmin

subject to 0.9Mnom ≤M ≤ 1.1Mnom,
(xn)LB ≤ xn ≤ (xn)UB,

(1)

whereSMmin is the minimum over all safety margin
values,M is the mass of the EP,Mnom is the nominal
mass of the EP, andxn is the vector of design variables
with lower and upper bounds(xn)LB and (xn)UB , re-
spectively, forn = 1, . . . , 5. The safety margin values
were computed for the EP internal components based on
either a stress allowable value or an acceleration allowable
value. The safety margins based on stress values were
computed as

SMi =
σai
σi
− 1, for i = 1, . . . , 42, (2)
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whereσa is the allowable stress andσi is the computed
maximum stress in theith block. Similarly, the safety
margins on acceleration values were computed as:

SMi =
gai
gi
− 1, for i = 43, . . . , 55, (3)

wherega is the allowable acceleration level, andgi is the
computed maximum acceleration level in theith block.

In these SM definitions (Equations 2 and 3), the frac-
tional term is called the safety factor. Here,σai is the yield
stress for the particular material block andgai was fixed
at a constant value for all relevant material blocks. The
nominal EP design hadSMmin = −0.48, which can be
interpreted as some part of the EP being exposed to twice
the allowable stress/acceleration and obviously prone to
failure.

Since this Phase 1 optimization formulation was ex-
pected to be nonsmooth due to switching among various
components with the lowest safety margin, a nongradient-
based method was selected for the initial optimization of
the EP. This method was the coordinate pattern search
method (CPS) [13] contained in the Stochastic Global Op-
timization (SGOPT) [14] software package (SGOPT is
linked into the DAKOTA toolkit).

A single Salinas function evaluation required approxi-
mately 40 minutes on 256 processors of ASCI Red. Us-
ing the two-level parallel capabilities in DAKOTA, 10 in-
stances of Salinas were executed concurrently. This com-
pleted a full optimization cycle of the CPS algorithm in
one pass since CPS requires2n function evaluations on
each cycle (i.e., 10 Salinas jobs performed concurrently
for n = 5). The CPS method was able to improve the
minimum safety margin from the nominal value of -0.48
to -0.21 with a mass increase of5.4%, using a total of
171 function evaluations (Table 2). The pattern search
made good progress until three separate margin functions
were active at the current optimum. This occurrence ad-
versely affected the convergence rate of the pattern search
method, as it was difficult to generate a step which simul-
taneously improved all three safety margins from the finite
set of coordinate search directions.

6.1.2 NPSOL-SQP Algorithm

At this stage of the optimization, it was clear that ob-
taining a feasible design would be difficult with the CPS
algorithm. Consequently, the problem formulation was
changed to one that would be more amenable to gradient-
based methods. In addition, more design freedom was
added by introducing four new design parameters into the
optimization problem. This new formulation of the opti-

Table 2: The sequence of optimization results for the elec-
tronics package.

Design Mass Violations Worst SM
(kg)

Nominal 11.143 8 -0.4797
CPS 11.747 4 -0.2141

NPSOL-SQP 11.739 4 -0.05867
and

DOT-MMFD
Verified 11.997 0 +0.06031

Approx. Opt.

mization problem was

minimize M
subject to SMi ≤ SMtarget, for i = 1, . . . , 55,

(xn)LB ≤ xn ≤ (xn)UB,
(4)

whereSMtarget = 0, andn = 1, . . . , 9. This formulation
reduces nonsmoothness by eliminating the possibility of
switching between the minimum margin function, as it al-
lows the optimizer to track each margin function indepen-
dently in the constraints. This does not totally eliminate
all sources of nonsmoothness, however, since switching
in space and time of the critical response within the finite
element block covered by a single margin function is still
possible.

The sequential quadratic programming (SQP) method
in NPSOL [15] was configured to run with parallel cen-
tral finite differencing. Forn = 9 variables, this gives
a total of2n + 1 = 19 concurrent function evaluations.
Given 10 concurrent Salinas executions on ASCI Red, the
19 jobs could be completed in two passes. NPSOL was
able to improve the minimum safety margin from−0.21
(the best CPS results) to−0.15 and reduce the total mass
to 4.4% over nominal, using a total of 133 function eval-
uations. Unfortunately, NPSOL was not able to run more
than a few cycles before one of the Salinas jobs hung. This
coincided with the expiration of the special allotment of
2560 ASCI Red processors that had been dedicated to this
study.

6.1.3 DOT-MMFD Algorithm

The optimization process was continued using 256 ASCI
Red processors. However, the decision was made to
switch from NPSOL’s SQP algorithm to DOT’s Modi-
fied Method of Feasible Directions (MMFD) [16] algo-
rithm. The reasoning for this switch was that the DOT-
MMFD algorithm is designed to find a feasible point, even
at the expense of increasing the objective function value.
In contrast, the NPSOL-SQP algorithm is an infeasible
method that only satisfies the constraints at convergence.
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Figure 4: A comparison of safety margin levels in the original (left) and optimized electronics package models. The
brighter colors indicate lower safety margins.

In addition, NPSOL’s gradient-based line search (in user-
supplied gradient mode) is ill-suited for cases that use fi-
nite differencing without concurrency in function evalua-
tions.

Starting from the NPSOL-SQP best design point, the
DOT-MMFD algorithm improved the worst safety margin
value fromSM = −0.15 to SM = −0.059, although
it did not find a feasible design point. This DOT-MMFD
algorithm used 96 Salinas function evaluations before it
was terminated.

Table 2 shows the progression of the optimization re-
sults for this study. The CPS algorithm and the two NLP
algorithms (NPSOL-SQP and DOT-MMFD) combined to
move the infeasible nominal EP design to an improved in-
feasible design. The worst case safety margin violation
had been reduced by about a factor of 10, at a cost of a
5.3% increase in the mass of the EP. Figure 4 compares
SM contours at a selected time step which highlights the
largest contrast between the nominal and best Phase 1 de-
signs.

At this point in the study, DAKOTA had controlled up
to 10 concurrent Salinas jobs, each of which used 256 pro-
cessors. This use of up to 2560 processors was successful
in compressing the duration of Phase 1 to four days. With-
out the use of parallel computing, equivalent calculations
using serial optimization and serial simulation would have

required in excess of 10 years to complete.

Additional information became available which moti-
vated the next phase of this study. Some Salinas data from
earlier parameter study runs was fully post-processed, and
it was discovered that a subset of the safety margin func-
tions exhibited considerable nonsmoothness (Figures 5, 6,
and 7). One of these nonsmooth functions was active at
the DOT-MMFD solution and was preventing any further
progress. Thus, the decision was made to switch to an ap-
proximate optimization strategy that used surrogate mod-
els to smooth the noisy safety margin constraint functions.

6.2 Phase 2: Optimization using Approxi-
mate Models

The approximate optimization (AO) strategy used in this
study is a simplified version of the sequential approximate
optimization strategy described in [17]. This AO strat-
egy is divided into the following steps: (1) move limit
(bounds) selection, (2) data sampling, (3) surface fitting to
produce surrogate models, (4) optimization using the sur-
rogate models, and (5) validation of the optima predicted
in Step (4). The steps of the AO strategy are described
below.
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6.2.1 Move Limits

The best set of design variables found using DOT-MMFD
served as the starting design for the approximate opti-
mization phase. An analysis of the previous optimization
data showed that two of the variables did not strongly in-
teract with the optimizer. Thus, these two variables were
converted to constants, each having the optimal value ob-
tained from the DOT-MMFD results. The upper and lower
bounds on each of the remaining seven variables were re-
duced to between18% and43% of the original bounds
based on engineering judgment and the desire to balance
the needs of sufficient design freedom and sufficient sam-
pling density. For the remainder of this report, these re-
duced bounds are referred to as themove limitsof the ap-
proximate optimization.

6.2.2 Latin Hypercube Sampling

Next, the Latin hypercube sampling (LHS) method [18]
provided by the DDACE package [19] within DAKOTA
was used to generate 200 independent sample locations
within the move limits. The 200 samples created by the
LHS method correspond to unique EP designs. Salinas
was used to evaluate as many of these EP designs as pos-
sible using the remainder of the computational budget de-
voted to this project. This Salinas/DAKOTA calculation
again used two-level parallel computing, with four con-
current Salinas jobs, each of which used 256 processors
(1024 total processors).

Unfortunately, only 104 of the LHS design points were
evaluated during the allocated ASCI Red computer time.
While the 104 samples did not compromise a true LHS
data set, there were a sufficient number of samples for use
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in the approximate optimization phase of this study. One
check of the LHS data set involved a preliminary statisti-
cal analysis to assess the distribution of the 104 samples
in the design space. This analysis did not indicate any cor-
relation or bias among the samples that would have ren-
dered the Latin hypercube samples unusable. Also, the set
of 104 samples was sufficient to overfit a 7-dimensional
quadratic polynomial (having 36 terms) by almost a factor
of three. It is a good rule of thumb to overfit polynomial
models whenever possible.

6.2.3 Surrogate Model Construction

The version of DAKOTA used in this study employed four
surrogate modeling techniques. These were: (1) kriging
spatial interpolation [20, 21]; (2) quadratic polynomial
regression (QuadPoly) [22]; (3) multivariate adaptive re-
gression splines (MARS) [23]; and (4) stochastic layered
perceptron artificial neural networks (ANN) [24].

The kriging, MARS, and ANN methods do not assume
a particular trend in the data. That is, these three surro-
gate modeling methods can capture arbitrary variations in
a given data set. In contrast, the quadratic polynomial re-
gression assumes that the data trends can be modeled us-
ing second-order functions. Thus, while all of these sur-
rogate models provide a smooth functional form that is
amenable to gradient-based optimization, the QuadPoly
surrogate models enforce additional smoothing by nature
of the assumed quadratic form.

6.2.4 Optimization with Surrogate Models

Post-processing on each of the 104 Salinas jobs yielded
a set of mass and safety margin data. This data was in-
put into DAKOTA in order to build 56 separate surrogate
models which define the functional relationships between
the objective and constraint functions (mass and 55 safety
margins) and the seven EP design parameters. These sur-
rogate models were then used in the optimization problem
in place of the Salinas simulations. In this case, multiple
optimizations could be performed using the surrogates at
very low cost. The drawback is that the surrogate mod-
els can be inaccurate, particularly if the optimizer pushes
the EP design near the move limit boundaries, where the
surrogate models begin to extrapolate the data trends.

The first surrogate model type used in this study was
quadratic polynomial regression. That is, the problem de-
fined in Equation 4 was solved using QuadPoly surrogate
models for mass and each of 55 constraints. For the initial
approximate optimization case, the value ofSMtarget in
Equation 4 was set to−0.05. Since these surrogate mod-
els allow for very inexpensive evaluations, several Monte
Carlo sampling studies were performed in order to iden-
tify good starting points for the gradient-based optimiza-
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Figure 8: Mass vs. safety margin tradeoff curves gener-
ated using various surrogate model types.

tions (even though each function is unimodal, their inter-
sections can produce multiple constrained minima). The
bound constraints for these gradient-based optimizations
were identical to the move limit bounds used in the sur-
rogate model construction. Next,SMtarget was increased
to 0.0 and the optimization was performed again. This
sequence was continued withSMtarget values of0.05,
0.10, and0.15. This was done to generate the mass versus
safety margin tradeoff plot shown in Figure 8.

A similar sequence of approximate optimizations was
performed for each of the other three surrogate model
types: kriging, MARS, and ANN. In cases where the
safety margin targets were not met, the target was reduced
in an iterative fashion until a final maximized safety mar-
gin for the surrogate model was achieved. The EP mass
versus safety margin tradeoff curves for these surrogate
models types also are shown in Figure 8.

There are several interesting items to note about the
trends in Figure 8. First, the ANN curve does not follow
the same trends as the other three methods. This prompted
an examination of the ANN algorithm in DAKOTA, and
attempts to further test the ANN algorithm are currently
underway. Second, the kriging and ANN tradeoff curves
show a kink that results in an increased slope in mass ver-
sus SM. This behavior was traced to the optimizer bump-
ing up against one or more of the move limit bounds.

6.2.5 Validation of Approximate Optima

The final step in the entire optimization process was to
run Salinas validation analyses for the EP designs iden-
tified in the Phase 2 approximate optimization. The best
agreement between a predicted EP optimum and its corre-
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sponding Salinas validation data occurred for one of op-
tima obtained using the kriging surrogate models. In this
case, the actual mass was predicted very accurately (actual
and predicted both 11.997 kg), and the actual worst case
safety margin value was +0.060 (predicted to be +0.078).
The mass and worst case safety margin data for this vali-
dated EP design are listed in Table 2.

However, not all of the approximate optima were in
such good agreement with the Salinas validation data. In
some cases the approximate optima had predicted a posi-
tive worst case safety margin, whereas the Salinas valida-
tion analysis yielded a negative worst case safety margin.
This occurrence underscores the need for validation anal-
yses whenever any type of ad hoc approximate optimiza-
tion algorithm is employed.

One possible explanation for the successful results ob-
tained with the kriging surrogate models stems from the
different manner in which kriging extrapolates data as
compared to the other surrogate model types. That is, the
kriging model decays to the mean of the data values when
used to extrapolate far away from the sample sites. In
contrast, the other three surrogate model types extrapolate
using the slope of the data, i.e., trends that usually go to
± infinity far away from the sample sites. See Reference
[21] for more information on the extrapolation trends in
kriging versus polynomial regression.

Had sufficient computational resources been available,
this process would have been continued using a traditional
trust-region sequential approximate optimization strategy
[17] with additional rounds of sampling, fitting, optimiz-
ing, and validating. This would mitigate the validation er-
rors observed previously when only a single approximate
optimization cycle is performed.

7 Summary and Conclusions

This paper presents the results of a high-fidelity electron-
ics package design study using a massively parallel struc-
tural dynamics code and a multilevel parallel optimization
framework.

From the applications perspective, this study demon-
strates the utility of having a toolbox of algorithms from
which to tailor the optimization procedure as experience
with a particular application increases. Through the com-
bination of nongradient, gradient, and approximate opti-
mization methods, the electronics package design was im-
proved from an infeasible design which violated response
allowables by a factor of two to a completely feasible de-
sign with positive design margins, while still remaining
within strict mass targets. In addition, a tradeoff curve of
mass versus safety margin was developed to facilitate the
design decision process.

From the parallel computing perspective, this paper

demonstrates the effectiveness of massively parallel com-
puting in reducing the time to solve an actual engineer-
ing design problem. During one portion of the EP design
optimization process, a series of studies employed up to
2560 processors in a combination of coarse-grained and
fine-grained parallel processing. These studies were com-
pleted in four days, where equivalent calculations on a
single desktop computer would require in excess of 10
years. Clearly, the redesign of the EP, using a 500,000
degree-of-freedom finite element model, could not have
been accomplished without the use of massively parallel
computing.

While certain aspects of current-generation custom su-
percomputers do not yet lend themselves to routine stud-
ies of this type, several directions for improvement have
been identified. It is expected that advances in optimiza-
tion and supporting parallel software will be successful in
making high-fidelity studies of this type a standard com-
ponent of modeling and simulation activities in the De-
partment of Energy complex.
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